Performance of genotypic tools for prediction of tropism in HIV-1 subtype C V3 loop sequences.
نویسندگان
چکیده
Currently, there is no consensus on the genotypic tools to be used for tropism analysis in HIV-1 subtype C strains. Thus, the aim of the study was to evaluate the performance of the different V3 loop-based genotypic algorithms available. We compiled a dataset of 645 HIV-1 subtype C V3 loop sequences of known coreceptor phenotypes (531 R5-tropic/non-syncytium-inducing and 114 X4-tropic/R5X4-tropic/syncytium-inducing sequences) from the Los Alamos database (http://www.hiv.lanl.gov/) and previously published literature. Coreceptor usage was predicted based on this dataset using different software-based machine-learning algorithms as well as simple classical rules. All the sophisticated machine-learning methods showed a good concordance of above 85%. Geno2Pheno (false-positive rate cutoff of 5-15%) and CoRSeqV3-C were found to have a high predicting capability in determining both HIV-1 subtype C X4-tropic and R5-tropic strains. The current sophisticated genotypic tropism tools based on V3 loop perform well for tropism prediction in HIV-1 subtype C strains and can be used in clinical settings.
منابع مشابه
Appraising the performance of genotyping tools in the prediction of coreceptor tropism in HIV-1 subtype C viruses
BACKGROUND In human immunodeficiency virus type 1 (HIV-1) infection, transmitted viruses generally use the CCR5 chemokine receptor as a coreceptor for host cell entry. In more than 50% of subtype B infections, a switch in coreceptor tropism from CCR5- to CXCR4-use occurs during disease progression. Phenotypic or genotypic approaches can be used to test for the presence of CXCR4-using viral vari...
متن کاملComparison of population and 454 "deep" sequence analysis for HIV type 1 tropism versus the original trofile assay in non-B subtypes.
HIV-1 tropism can be predicted using V3 genotypic algorithms. The performance of these prediction algorithms for non-B subtypes is poorly characterized. Here, we use these genotypic algorithms to predict viral tropism of HIV-1 subtype A, B, C, and D to find apparent sensitivity, specificity, and concordance against a recombinant phenotypic assay, the original Trofile assay. This is a substudy o...
متن کاملGenotypic Prediction of Co-receptor Tropism of HIV-1 Subtypes A and C.
Antiretroviral treatment of Human Immunodeficiency Virus type-1 (HIV-1) infections with CCR5-antagonists requires the co-receptor usage prediction of viral strains. Currently available tools are mostly designed based on subtype B strains and thus are in general not applicable to non-B subtypes. However, HIV-1 infections caused by subtype B only account for approximately 11% of infections worldw...
متن کاملGenotypic prediction of HIV-1 CRF01-AE tropism.
HIV-1 subtype CRF01-AE predominates in south Asia and has spread throughout the world. The virus tropism must be determined before using CCR5 antagonists. Genotypic methods could be used, but the prediction algorithms may be inaccurate for non-B subtypes like CRF01-AE and the correlation with the phenotypic approach has not been assessed. We analyzed 61 CRF01-AE V3 clonal sequences of known phe...
متن کاملHIV-1 Tropism Determination Using a Phenotypic Env Recombinant Viral Assay Highlights Overestimation of CXCR4-Usage by Genotypic Prediction Algorithms for CRRF01_AE and CRF02_AG
BACKGROUND Human Immunodeficiency virus type-1 (HIV) entry into target cells involves binding of the viral envelope (Env) to CD4 and a coreceptor, mainly CCR5 or CXCR4. The only currently licensed HIV entry inhibitor, maraviroc, targets CCR5, and the presence of CXCX4-using strains must be excluded prior to treatment. Co-receptor usage can be assessed by phenotypic assays or through genotypic p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intervirology
دوره 58 1 شماره
صفحات -
تاریخ انتشار 2015